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Abstract— So far the focus of almost all multi- or many-objective performance metrics has been the convergence and distribution of 

solutions in the objective space (Pareto-surface). Pareto-surface metrics such as IGD, HV, and Spread are simple and provide 

knowledge about the overall performance of the solution set. However, these measures do not provide any insight into the distribution 

or spread of a solution set with respect to each objective. Further, in many-objective optimization, visualization of true Pareto fronts or 

obtained non-dominated solutions is difficult. A proper visualization tool must be able to show the location, range, shape, and 

distribution of obtained non-dominated solutions (both Pareto-surface and objective-wise distribution). Existing commonly used 

visualization tools in many-objective optimization (e.g., parallel coordinates) fail to show the shape of the Pareto front or distribution of 

solutions along each objective. In this paper, we propose an extension of recently proposed visualization method called 3D-RadVis (we 

call it 3D-RadVis Antenna) to visualize the distribution of solutions along each objective. 3D-RadVis Antenna is capable of mapping M-

dimensional objective space to a 3-dimensional radial coordinate plot while seeking to preserve the relative location of solutions, shape 

of the Pareto front, and distribution of solutions along each objective. Furthermore, 3D-RadVis Antenna can be used by decision-

makers to visually navigate large many-objective solution sets, to observe the evolutionary process, to visualize the relative location of a 

solution, to evaluate trade-offs among objectives, and to select preferred solutions. Along with this visualization tool, we propose two 

novel performance measures, named objective-wise inverse generational distance (ObjIGD) and line distribution (     ) to measure the 

convergence and distribution of solutions along each objective as well as the overall performance of approximate solutions. The 

effectiveness of the proposed methods are demonstrated on widely used many-objective benchmark problems containing a variety of 

Pareto fronts (linear, concave, convex, mixed, and disconnected). In addition, for a case study, we have demonstrated the capability of 

3D-RadVis Antenna combined with the proposed performance measures for visual progress tracking of the NSGA-III algorithm 

through generations. Experimental results show that the proposed visualization method can effectively be used to compare and track 

the performance of many-objective algorithms.  Moreover, the proposed measures can be used as reliable complementary measures 

along with other widely used performance measures to compare many-objective solution sets.     

 
Index Terms— Visualization, performance metrics; evolutionary computation; many-objective optimization, radial coordinate 

mapping; 3D-RadVis; convergence; diversity; hypervolume. 

I. INTRODUCTION 

EAL-WORLD optimization applications are ever more encompassing and increasingly complex these days. Particularly, 

more input data and parameters are available to capture the complexity of a problem leading to more decision variables being 

used to model complex situations. Additionally, optimizing a high number of objectives is involved in these situations, leading to 

further complexity. 

Many real-world applications involve a high number of objectives (typically more than three). Visualization of solutions hence 

becomes difficult. However, visualization is necessary as it is a proper decision making tool leading to a better understanding of 

algorithms used and tradeoff solutions. As the number of objectives exceeds three, the visualization of approximation sets is more 

challenging [1]. There exists many 2- or 3-dimensional data visualization methods that are used for many-objective optimization 

(MaOO). Parallel coordinates [2] and Heatmap plots [3] are two examples that can be used to visualize distribution, range, and 
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trade-off among solutions of multi-dimensional objectives. Nonetheless, such methods are often difficult to interpret due to 

solutions being superimposed or arbitrarily ordered [4]. There are other methods, such as self-organizing maps [3] and radial 

coordinate visualization [5], that show the distribution and inter-relationship among objectives, yet they do not illustrate the shape 

and convergence trend of the solution sets. Fortunately, there are recent advances in visualization methods to cope with 

visualizing high-dimensional search space while attempting to preserve the distribution, shape, and dominance relationship 

among approximate Pareto front members. Some of these visualization methods include the extension of radial coordinate 

visualization and Heatmap [4, 6-8]. 

The other main issue is the lack of quantitative metrics capable of measuring the convergence and diversity of a solution set 

when the number of objectives is high. For example, the hypervolume (HV) [9] measure is widely used performance metric in 

MaOO. It captures the convergence and diversity of a solution set even when the optimal Pareto front (PF) is unknown. However, 

the high computational complexity (exponential) of the HV metric makes it impractical to be used when the number objectives 

are high [10-13].  Also, Pareto-surface metrics such as generational distance (GD), inverted generational distance (IGD), and 

Spread are simple and provide knowledge about the overall performance of the solution set [14-16]. However, these measures do 

not provide any insight into the distribution or spread of solution sets with respect to each objective. For example, a decision-

maker might mainly be interested in knowing real-estate properties in the range of $500,000 to $800,000. As an optimization tool 

provider, we need to provide the decision-maker with well distributed solutions in this price range and be able to quantitatively 

measure the distribution of solutions along this objective regardless of other objectives. Here, we are not implying the distribution 

of solutions over the Pareto-optimal surface is not important but we are suggesting the distribution of solution along each 

objective is equally important. Furthermore, studies have shown that these performance metrics contradict one another in the 

presence of extreme cases [17].  Hence, there is room for introducing more performance metrics (in conjunction with widely used 

performance metrics) suited for measuring the distribution of solutions along each objective. 

The objective of this paper is to introduce a powerful visualization method, called 3-dimensional radial coordinate with antenna 

(3D-RadVis Antenna) that allows MaOO researchers, decision makers and any interested party to better understand the 

optimization process along with intermediate and final results of an algorithm. 3D-RadVis Antenna is an extension of 3D-RadVis 

[6] that permits a decision maker to visually explore many-objective solution sets and identify one or more preferred optimal 

solutions (not solely based on the convergence and distribution of solution on the Pareto-optimal front but also distribution of 

solutions along each objective). As 3D-RadVis Antenna maps M-dimensional objective to a 3-dimensional space, decision 

makers can benefit from immersive virtual reality (VR) technologies, such as the CAVE [18] to visualize high-dimensional 

decision and solution space and select preferred solutions with ease. VR tools have been widely used in several disciplines where 

past visualization technologies are limited when analyzing and interacting with data [19-22]. In the optimization field, decision 

makers can use VR tools to visualize and interactively select the ideal solution according to their specific situation (set of 

requirements, budget etc.). In the same fashion, researchers can utilize 3D-RadVis Antenna in conjunction with VR tools to 

investigate aspects of many-objective optimization algorithm’s (MaOOA) behavior such as, performance comparison, parameter 

specifications, and maybe even develop efficient algorithms to tackle MaOO problems. Also, a proper visualization tool can 

potentially lead to the development of effective interactive optimization methods. In conjunction with the proposed visualization 

approach, two performance measures, called objective-wise inverse generational distance (ObjIGD) and line distribution (     ), 

are proposed to quantitatively assess the convergence, spread, and diversity of solution sets obtained by many-objective 

population-based algorithms. The ObjIGD measure measures the convergence and distribution of a solution set for a given 

objective, whereas the       measure measures the diversity and spread of approximate solutions without the Pareto-optimal set. 

Experimental results show that good distribution on the Pareto-surface does not necessarily imply a good distribution along each 

objective.  

The rest of the paper is organized as follows. Section II provides a survey of visualization methods and performance measures 

used in MaOO. Section III provides the technical description of the proposed visualization scheme, 3D-RadVis Antenna, along 

with two performance measures to measure objective-wise convergence, spread, and diversity of approximate solutions. Section 

IV presents experimental investigation of 3D-RadVis Antenna and the proposed measures on well-known many-objective 

benchmark problems and algorithms. Concluding remarks are provided in Section V.  

II. SURVEY OF VISUALIZATION METHODS AND PERFORMANCE MEASURES USED IN MANY-OBJECTIVE OPTIMIZATION 

 As the number of objectives increases, visualization of the approximation set becomes progressively challenging. Moreover, 

the applicability of quantitative metrics capable of measuring the convergence and diversity of solution sets are problematic due 

to inconsistencies among them [17].  In Section A we describe the classical and recent advances in visualization techniques, and 

in Section B we discuss performance metrics used in MaOO. 
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A. Visualization Methods 

1) Classical Visualization Methods 

In MaOO, when the number of objectives are two or three, many effective visualization tools are available. The issue arises 

when the number of objectives are four or more leading to very challenging visualization of approximation sets. For instance, 

parallel coordinates [2] Heatmap plots [23], self-organizing maps [3] and radial coordinate visualization [5] are classical 

visualization tools that can be used to visualize the  

 

Fig. 1. Visualization schemes used in MaOO problems showing well didtributed four-dimesional concave Pareto front generated using the equation   
    

  
  

     
   

distribution, range, and trade-off among solutions of many-objective solution sets. Nonetheless, these tools usually fail to 

preserve the shape or dominance relationship and are not capable of showing the convergence trend of the solution set. 

Parallel coordinates plot is a popular way to visualize the distribution, range, and trade-off among solutions of multi-objectives 

[24, 25]. Here, an objective is represented by a polyline with vertices on parallel axes placed along the x-axis. The parallel axes 

are equidistant vertical bars along the x-axis for each of the objectives. The y-axis corresponds to the range of possible values for 

each of the objectives. Despite the inability of parallel coordinate plots of showing the shape of the Pareto front, they are simple 

to construct, scale well to larger numbers of objectives, and are a great visualization tool to illustrate dependencies among 

objectives without the loss of data in the representation [26]. Fig. 1(a) depicts a parallel coordinates plot of four-dimensional 

concave data points generated using the equation   
    

    
     

   . 

Similar to the parallel coordinates plot, Heatmap [23] plots represent  objective values using colors as opposed to polylines 

with vertices. These plots are very easy to construct and can scale well to visualize higher dimensional objectives. Additionally, 

heat maps can show dependencies among objectives without the loss of data in the representation. However, these plots do not 

scale well when the number of solutions are large because the number of colors used to represent each solution is also large. 

Furthermore, they cannot show the shape of the PF. Fig. 1(b) depicts a Heatmap plot of four-dimensional concave data points. 

A scatter plot matrix is a simple visualization method capable of showing the pair-wise relationship of objectives while also 

preserving some information on the shape of the PF. Given an M-objective data set, a scatter plot matrix plots all objective pairs 

[27, 28]. However, as the number of objectives increases, the scatter plot matrix doesn't scale well because it requires a large 

space to show the relationship among pairs of objectives. Fig. 1(c) depicts a scatter plot matrix of four-dimensional concave data 

points.  

Bubble chart is another classical visualization method where the first and second objective values are represented using 

bubbles along the  - and  -axis and the third objective is represented by varying the size of the bubbles. There exists also a 

  
 

(a) Parallel coordinates plot (b) Heatmap (c) Scatter plot matrix 

  
 

(d) Bubble chart (e) Self-organizing maps (f) RadVis 
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variation of bubble chart that utilizes the  -axis and colored bubbles to represent the 4
th

 and 5
th

 dimension [29, 30]. Fig. 1(d) 

depicts bubble chart representing four-dimensional concave data points.  

Self-organizing maps (SOM) [3] are one type of artificial neural networks (ANN) trained using unsupervised learning in order 

to provide a mapping from M-dimensional objective to a lower dimensional space (typically 2-D) [31].  These maps consist of 

nodes (neurons) associated with a weight vector of the same dimension as the input data vectors or neurons. These nodes are 

arranged in a 2D space using a hexagonal or rectangular grid. Typically, SOMs use the unified distance matrix (U-Matrix) [32] to 

store each node’s average distance to its closest neighbors (different colors are used to represent each node’s distance to adjacent 

nodes). Clusters of similar neurons are represented with light areas while dark areas indicate cluster boundaries.  Fig. 1(e) depicts 

self-organizing map plot of four-dimensional concave data points. 

Radial coordinate visualization (RadVis) [5] is an alternative high-dimensional visualization method mainly used to visualize 

hierarchical density clusters by mapping M-dimensional data set to a 2-dimensional space using a nonlinear mapping. To better 

understand RadVis, consider a point in 2-dimensional space connected to M equally spaced points on a circle with springs, where 

each dimension value is equal to the spring constant for the corresponding spring. Now, imagine that the 2-dimensional point is 

allowed to move and reach equilibrium, the location of this point will be the mapping of M-dimensional data points onto a 2-

dimensional space. Fig. 1(f) depicts RadVis plot of well distributed four-dimensional concave data points. Despite RadVis plots 

incapability of showing the shape and convergence of the PF, RadVis plots are simple to construct, scale well to large numbers of 

objectives, and are a great visualization tool to show the distribution of solutions. 

2) Recently Proposed Visualization Methods 

Recently a number of visualization methods have been proposed to deal with higher dimensional data sets. The following 

paragraphs will introduce the main ones. 

Tusar and Filipic [8] proposed a visualization method that uses projection of a chosen subsection of the solution set to 

visualize 4-D approximation. This method allows researchers and decision makers to view the shape, range and distribution of 

large approximation sets. In some cases it preserves the Pareto dominance relation and the convergence of the Pareto optimal 

front. The drawback of this method is that it cannot scale for higher dimensions (greater than four objective). 

He and Yen [7] proposed another method for visualizing high dimensional objectives by mapping them onto a two-dimensional 

polar coordinate. Their visualization method takes each individual high-dimensional Cartesian point and assigns a radial and 

angular coordinate value. The radial coordinate value represents the convergence and shape of the Pareto front and the angular 

coordinate represents the distribution among the individuals. However, their method fails to show the relative location of a 

solution with respect to each objective.  

Walker et al. [4] proposed visualization for mutually non-dominating solution sets by using the rank solutions on each 

objective. As a result they enhanced the Heatmap plot by spectral seriation of both the objectives and the solutions in order to 

place similar objectives and similar solutions together. However, even though their scheme is able to enhance the Heatmap plot, 

the visualization of dominance relationships between solutions was not geometrically apparent. 

Recently, Ibrahim et al. [6] proposed 3D-RadVis visualization method to visualize many-objective solution sets. This method 

is capable of mapping M-dimensional objective space to a 3-dimensional radial coordinate plot while seeking to preserve the 

relative location of solutions, shape of the Pareto front, distribution of solutions, and convergence trend of an optimization 

process. They have used the radial coordinate system to preserve the distribution and relative location of solutions and the 

orthogonal distance of each solution to a reference hyper-plane to preserve the shape and convergence of a solution set.  

B. Performance Metrics 

Unlike single-objective optimization, where the assessment of the performance of a metaheuristic requires observing the best 

value given by an algorithm, this is not applicable in multi-objective optimization. An approximation set to the optimal PF of the 

problem is computed. Here, the required properties are convergence (i.e., how close the solution is to the true PF) and uniform 

diversity (i.e., solutions that exhibit uniform distribution). Ideally, we are interested in quality indicators that do not require the 

true Pareto optimal front, but are however capable of measuring the convergence and diversity of a known solution. Several 

indicators for measuring the aforementioned properties have been proposed in the literature. These include: capacity metrics such 

as the overall non-dominated vector generation (ONVG) [33] and error ratio (ER) [34], convergence metrics such as  metric GD 

[14] and  -indicator [9], diversity metrics such as the overall Pareto spread (OS) [35] and  spread/diversity ( ) [16] and finally 

convergence-diversity metrics such as IGD [14, 15] and HV. Table I lists some MaOO performance indicators and their intended 

measure. In this paper we focus on three widely used performance metrics (IGD, HV, and spread) to evaluate the consistencies 

and contradictions among these metrics and proposed metrics.    

1) Spread 

The spread indicator [16] measures the distribution of solutions using the extreme points of the optimal Pareto-front (      ); 

and is defined as follows: 

         
      ∑ |    ̅|

     
   

       ̅       
 (1) 
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Where    and    are the Euclidean distances to the extreme solutions of the optimal Pareto front (   in the objective space;   is 

an approximate solution set,    is the Euclidean distance between consecutive solutions [17] and  ̅ is the mean of these distances. 

A Spread value of zero indicates an ideal distribution (i.e., uniformly distributed solutions in the Pareto front). Nonetheless, the 

Spread indicator is based on calculating the distance between two consecutive solutions which only works for two-objective 

problems. This indicator can further be extended by calculating the distance from a given point to its nearest neighbours; this is 

based on the metric proposed in [36]: 

        
∑         ∑      ̅ 

   
   

 
   

∑              ̅ 
   

 (2) 

where (         ) are   extreme solutions in       ,   is the number of objectives,            ‖          ‖,   is an 

approximate solution set,    is the set of Pareto optimal solutions and 

 

 
      

          

‖       (  )‖ 
(3) 

 ̅ is the mean of these   .  

2) Inverse Generational Distance (IGD) 

The IGD metric [14, 15] measures the convergence and the diversity of the obtained Pareto-optimal front by measuring the 

distances between each solution composing       and the closest solution in the obtained front. The IGD metric is defined as 

follows:  

          
∑     

   
‖          ‖

   
   

   
 (4) 

Where   is the        and   is the obtained front.  The smallest IGD value indicates a superiority of an algorithm. 

3) Hypervolume (HV) 

The HV indicator [9] measures the volume of the dominated portion of the objective space. The interest in this indicator stems 

from the fact that it contains the strict Pareto compliance which is a highly desirable feature. In other words, if   strictly 

dominates  , then the HV value of   is higher than the HV value of  . The HV measure is obtained by computing the volume of 

the non-dominated set of solutions,  .  

For every solution  , a hypercube    is generated with a reference point   and the solution   as its diagonal corner. The 

reference point   can be generated by building a vector of worst possible objective function values. Then, the HV is computed as 

a union of all hyper-cubes as follows: 

         ⋃   

   

   

 (5) 

One good feature of HV is that, it does not require the        to compute the volume. However, the computational complexity of 

HV increases exponentially with the number of objectives. A solution set with the largest HV value indicates the superiority. 

TABLE I.  SUMMARY OF PERFORMANCE METRICS USED IN MANY-OBJECTIE OPTIMIZATION 

Quality Indicator 

Intended measure Optimal 

Pareto front 

Required 
Convergence Diversity 

Hypervolume (HV) Yes Yes No 

Error Ratio (ER) Yes No Yes 

Spread No Yes Yes 

Inverted Generational 

Distance (IGD) 
Yes Yes Yes 

R2 No Yes Yes/No 

Epsilon ( ) Yes No No 

III. PROPOSED METHODS 

In this section, we describe the proposed visualization technique (3D-RadVis Antenna) and two performance measures capable 

of quantifying the spread and distribution of MaOO solutions along each objective. The 3D-RadVis Antenna method is an 

extension of recently proposed 3D-RadVis [6] method where poles are added for each objective to visualize the spread and 

distribution of solutions along each objective.  
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A. Proposed Visualization (3D-RadVis Antenna) 

The framework of the proposed 3D-RadVis Antenna visualization scheme is similar to 3D-RadVis (the bottom portion of the 

plot); however, 3D-RadVis Antenna incorporates poles for each objective to show objective-wise distribution of solutions (the top 

portion of the plot). In this section, first, we explain the mapping process utilized in 3D-RadVis along with minor modification 

proposed to simplify the construction of the reference hyper-plane. Second, we introduce the proposed extension to 3D-RadVis.   

From this point forward solution set refers to a non-dominated solution set.  

Consider     non-dominated solutions, where   is the number of solutions and   is the dimension of the solution; the 

mapping process of 3D-RadVis involves two main steps: first, determining the distance of each solution from a reference hyper-

plane, and second, mapping the location of  -dimensional solutions to a 2-dimensional    plane. The reference hyper-plane in 

3D-RadVis is constructed using M extreme/boundary solutions extracted from the solution set. However, in 3D-RadVis Antenna, 

the reference hyper-plane for M-dimensional problem is constructed using   points containing                    
                           . The choice of these points is to help us standardize the 3D-RadVis Antenna plots so the same 

reference hyper-plane is used to compute the orthogonal distance ( ) between a point (solution) and the reference hyper-plane. 

Moreover we can avoid unnecessary computation and extreme situations (e.g. the number of available solutions are less than the 

number of objectives) when finding M boundary solutions. The orthogonal distance between points to the reference hyper-plane 

helps us preserving the shape and convergence of the solution set. This procedure is presented in Algorithm 1, lines 1 to 9.    

Next, 3D-RadVis utilizes the RadVis [5] scheme to map an  -dimensional normalized solution set onto a 2-dimensional    plane 

(      .    Given     normalized non-dominated solutions (                                             

            , where   is the number of objectives and   is the number of solutions, and solution   can be mapped to a 2D radial 

space as follows: 

    
∑     

            
 
   

∑     
     

   

 (6) 

and 

    
∑     

            
 
   

∑     
     

   

 (7) 

where    is the angular position on the circle corresponding to dimension  . The RadVis mapping procedure is described in 

Algorithm 2.  

Algorithm 1:  3D-RadVisAntenna ( ) Procedure 

Input:        matrix formed by   non-dominated 

solutions, where   is the number of objectives. 

Output:       transformation matrix for 3D-RadVis 

visualization and        transformation matrix for 

Antenna plot. 

         // 3D-RadVis transformation 

1: //Construct a reference hyper-plane 

  = eye(M) 

%                                     

           

2: //Calculate the normal vector for the reference hyper-

plane with boundary points,  :  

    norm    

3: Calculate the hyper-plane equation constant,   for this 

plane:          

4: for       to   

Calculate the perpendicular distance from n to 

solution  :     
              

‖ ‖
 

5: end for 

6: Normalize   by each objective:        

normalize( ) 
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The top portion of 3D-RadVis Antenna plot consists   poles 

(antenna) to show the distribution of solutions along each 

objective. The first step to plot the antenna is to find the location 

of antenna poles (vertical lines). The location of these vertical 

lines are computed using the boundary points. The length of these 

vertical lines are kept at the maximum perpendicular distance of 

points from the reference hyper-plane (    ). This strategy will 

keep the top and the bottom portions of the plot with equal height. 

The next step is to compute the location of antenna directors (tick 

marks) along the vertical poles. The location of the antenna 

directors along each objective calculated by multiplying       

by      and shifting these points by      to place them on the 

top portion of the plot. The Antenna plot procedure is presented 

in Algorithm 1, lines 10 to 16. Fig. 2 illustrates the 3D-RadVis 

Antenna transformation process. Figs. 4 to 8 show 3D-RadVis 

Antenna plots for two- to five-objective concave, convex, mixed, 

disconnected, and biased Pareto surfaces.  

 

B. Proposed Performance Measures 

So far the focus of almost all multi- or many-objective 

performance measures are on the convergence and distribution of 

solutions in the objective space (Pareto-surface). Pareto-surface 

metrics such as IGD, HV, and Spread are simple and provide 

knowledge about the overall performance of the solution set. 

However, these measures do not provide any insight into the 

distribution or spread of solution set with respect to each 

objective. Further, studies have shown that these performance 

metrics contradict one another in the presence of extreme cases.  

To the best of our knowledge there is no performance measure 

capable of evaluating solution superiority based on the accuracy 

and distribution of solution along each objective. Therefore, in conjunction with the 3D-RadVis Antenna we propose two new 

performance measures called objective-wise inverse generational distance (ObjIGD) and line distribution (     ) to specifically 

assess the convergence, spread and diversity of MaOEAs along each objective.   

For example, consider a convex Pareto-surface   
      

      
      containing 91 solutions as depicted in Fig. 3. From the 

scatter plot Fig. 3 (a), we see that the solution set is well-distributed on the optimal PF surface. However, when we look at the 

3D-RadVis Antenna plot in Fig.3 (b) we see that the distribution of solutions along each objective is very poor. In fact, there is no 

solution containing              ,which means more than 40% of possible solutions are not accounted for by each objective. 

Therefore, we need to shift our research focus to find algorithms that not only provide accurate and well distributed solutions on 

the Pareto-front surface but also well-distributed solution along each objective and are able to measure the performance of these 

algorithms quantitatively. Now, let’s define two such measures capable of measuring the convergence and distribution of 

solutions along the     objective. 

 

7: Map       to 2D radial coordinates [     ] = 

RadVis (     ) 

8:              % the value of ranges from 0 to 

max( ).   

       // Antenna transformation 

9: Compute the highest value  :      = max( ).   

10: Compute   and   location of the boundary points: 

[     ] = RadVis ( ) 

Compute the location of antenna directors (tick 

marks) along each objective:  

11: for       to   

12:       for       to   

13:                                                 

14:       end for 

15: end for 

Algorithm 2:  RadVis (     ) Procedure 

Input:            normalized non-dominated solutions, 

where   is the number of objectives and   is the 

number of solutions.  

Output:         non-linear radial coordinates mapping of 

      

1: for       to   

2: Calculate 2D radial location/mapping of 

normalized objective:         Eqs.(6) and (7) 

3: end for  

4:               
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Fig. 2. Illustration of 3D-RadVis Antenna transformation

 

 

(a)  

 

(b)  

Fig. 3. Scatter and 3D-RadVis Antenna plots of three-objective convex PF containing 91 solutions. (a) Scatter plot showing more than 40% of    with no 

associated values.  (b) 3D-RadVis Antenna showing poor objective-wise distribution. 

1) Objective-wise Inverse Generational Distance (ObjIGD) 

The ObjIGD measure evaluates the convergence and distribution performance of MaOOA specifically along each objective. 

The main idea of ObjIGD is similar to the IGD metric, however ObjIGD measures the distance between the        and the 

closest solution based on individual objectives. The ObjIGD for the     objective is defined as follows:    
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∑     

   
   (  )        

   
   

   
 (8) 

Where   is the reference (      ), S is the approximate PF,   (  ) is the            solution of     objective and       is an 

approximate solution of     objective. The overall ObjIGD measure is defined as: 

              
∑               

   

 
  (9) 

where         is the    objective ObjIGD value and   is the number of objectives. Lower value of         measure implies 

better convergence and distribution along the     objective.   

2) Line Distribution (     ) 

The      measure measures the diversity and spread of approximate solutions without the need for the       . Let   be the 

mid-points of   equally divided intervals in the range of [0, 1] ([  
 

 
]  [

 

 
 
 

 
]    [

   

 
  ]), where   is the number of solutions in 

approximate the PF, then the     objective line distribution (     
 ) is defined as: 

      
       

∑     
   

|        |
   
   

   
  (10) 

where       is a normalized approximate solution of     objective. A zero value of the     objective line distribution signifies 

uniform distribution of the approximate PF along the     objective. The overall line distribution measure is defined as: 

 

 

 

TABLE II.  BENCHMARK TEST PROBLEMS 

Problem Characteristics 

DTLZ1 Linear, multimodal 

DTLZ2 Concave 

Convex DTLZ2 Convex 

DTLZ3 Concave 

DTLZ4 Concave, degenerate when (   ) 

DTLZ7 Disconnected,  convex and mixed convexity 

WFG1 Convex, mixed, biased 

TABLE III.   TEST NUMBER OF SOLUTIONS IN THE REFERENCE PFS AND OPTIMAL PFS.   IS THE NUMBER OF OBJECTIVES AND   IS NUMBER OF DIVISIONS 

ALONG EACH OBJECTIVE.  

M 
Reference PFs Optimal PFs 

                  

2 10000 10001 

24 

49 

99 

25 

50 

100 

25 

50 

100 

3 140 10011 

8 

12 

16 

45 

91 

153 

45 

91 

153 

4 38 10660 

5 

7 

9 

56 

120 

220 

56 

120 

220 

5 20 10626 

4 

6 

7 

70 

210 

330 

70 

210 

330 

TABLE IV.  PARAMETER SETTINGS FOR GDE3, NSGA-II, AND NSGA-III.   IS THE NUMBER OF VARIABLES 

Parameters GDE3 NSGA-II NSGA-III 
Elite-

NSGA-III 

SBX probability (    - 0.9 0.9 0.9 

Polynomial mutation (    -             

Crossover Distribution 

Index      
- 20 30 30 

Mutation Distribution 

Index      
- 20 20 20 
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Parameters GDE3 NSGA-II NSGA-III 
Elite-

NSGA-III 

Mutation probability 0.5 - - - 

Crossover probability 0.9 - - - 

TABLE V.  NUMBER OF REFERENCE POINTS AND POPULATION SIZES USED IN NSGA-III. 

Number of 

Objectives (M) 

Divisions Reference 

Points(H) 

Population 

Size (N) Outer Inner 

3 12 0 91 92 

5 6 0 210 212 

8 3 2 156 156 

 

 

            
∑      

        
   

 
  

(11) 

where      
  is the    objective ObjIGD value and   is the number of objectives.  

IV. EXPERIMENTAL INVESTIGATION 

In this section, we describe selected test benchmark problems, algorithms and their parameter settings used in this study. 

A. Test Problems 

In order to investigate the visualization capability of 3D-RadVis Antenna and the proposed performance measures, we have 

used five scalable MaOO benchmark problems with linear, concave, and convex shapes and two benchmark problems with 

complicated Pareto fronts. The benchmark problems are: DTLZ1, DTLZ2, convex DTLZ2, DTLZ3 and DTLZ4, DTLZ7 and 

WFG1 [37, 38]. The number of variables are (        ), where   is the number of objectives and       for DTLZ1, 

       for DTLZ7, and        for the remaining DTLZ test problems. The corresponding Pareto-optimal fronts lie in 

           for the DTLZ1 problem and in          for DTLZ2 – DTLZ4 problems. The DTLZ7 test problem has disconnected 

Pareto optimal fronts, where the Pareto optimal front consists of convex and some mixed concavity. The WFG1 has a mixed 

Pareto-optimal front and the Pareto-optimal fronts lie in          . Table II presents detailed characteristics of the test problems 

utilized in this study. Also, to investigate the consistencies and contradiction of the proposed performance measures and other 

well-known performance metrics (spread, IGD, and HV), we have constructed symmetric and continuous PFs as described in   

[17]. The true PFs for these experiments are constructed using: 

   
 

   
 

     
 

   (12) 

Where the objectives are normalized in the range [0, 1], and         is the parameter to control the geometrical shapes of PFs. To 

obtain the reference PFs ( ) required by the IGD and spread metrics, first we systematically generate weight vectors using the λ 

method or also known as the simplex lattice design [39, 40], where                    ,        are weight vectors and ∑   
 
    

 . The weight vectors are taken values from {
 

 
 
 

 
   

 

 
} where   is the number of divisions along each objectives. The number of 

weight vectors for   objectives is then given by       
   . Finally, the intersection point between   line and (12) denotes a reference 

solution. We also constructed two optimal solution sets (   and   ) with different diversities, where    is generated based on the 

simplex lattice design and    is generated using the Pareto-adaptive weight vectors (    method) [41] to maximize the HV value 

of   . The reference set   for HV metric is generated as   = {(1, 1)}, {(1, 1, 1)}, {(1, 1, 1, 1), (1, 1, 1, 1, 1)} on 2-, 3-, 4-, and 5-D 

PFs, respectively. Table III presents the number of solutions in the reference PFs ( ) and optimal PFs (   and   ) used in this 

study. 

    
(a)  (b)  (c)  (d)  
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(e)  (f)  

  
(g)  (h)  

Fig. 4. Scatter and 3D-RadVis Antenna plots for two-objective PFs.    and    points are generated using the simplex lattice design and     methods 

respectively. (a) Scatter plot of    points for concave PF   
    

   . (b) Scatter plot of    points for concave PF   
    

   . (c) Scatter plot of    points 

for convex PF   
      

     . (d) Scatter plot of    points for convex PF   
      

     . (e) 3D-RadVis Antenna plot of    points for concave PF   
  

  
   . (f) 3D-RadVis Antenna plot of    points for concave PF   

    
   . (g) 3D-RadVis Antenna plot of    points for convex PF   

      
     . (h) 

3D-RadVis Antenna plot of    points for convex PF   
      

     . 

B. Algorithms and Parameter Setting 

In order to investigate how the newly proposed performance measures are comparable with widely used MaOO performance 

metrics, we have chosen a recently proposed reference-point-based algorithm and two of the earliest multi-objective evolutionary 

algorithms. These algorithms are: reference-point-based non-dominated sorting genetic algorithm (NSGA-III) [31], non-

dominated sorting genetic algorithm II (NSGA-II) [16], and generalized differential evolution generation 3 (GDE3) [42]. For 

detailed information on these algorithms, readers are advised to refer to the original manuscripts. Table IV presents parameter 

settings used in these algorithms and Table V presents the number of reference points ( ), the population size ( ), and the 

number of inner and outer divisions used in NSGA-III for different dimensions of test problems. Population sizes for GDE3, 

NSGA-II, and NSGA-III are kept the same for all test problems. 

C. Proposed Visualization (3D-RadVis Antenna) 

Here, we investigate how well 3D-RadVis Antenna maps to 2-, 3-, 4-, and 5-objective PFs to a 3-dimensioanl space. Note that 

since 2-objective data points are mapped to only the x-axis, the    value is set to zero.  

1) Visualization of Concave and Convex PFs 

Experimental series 1 – these experiments investigate how well 3D-RadVis Antenna maps optimal solution sets (   and   ) 

having different diversities to a 3D space. The number of solutions in    and    are set to 100, 153, 220, 330 for 2-, 3-, 4- and 5-

objective respectively. Fig. 4 (a) to (d) show 2D scatter plots of    and    points for 2D concave (  
    

   ) and convex 

(  
      

     ) PFs. From these figures we see that    has better spread on concave PF than    and worse spread on convex PF. 

The 3D-RadVis Antenna in Fig. 4 (e) to (h) also show similar distribution of    and    solutions on concave and convex PF 

surfaces. Moreover the 3D-RadVis Antenna shows the distribution of    and    solutions along each individual objectives. From 

Fig. 4 (a) and (b) we see that the shape of the PF is similar to a quarter circle with radius = 1, centered at (0, 0). The largest distant 

point from the reference hyper-plane is located at the center of the arc. From the 3D-RadVis Antenna plots in Fig. 4 (g) and (f) we 

also see that the shape and the relative location of solutions are well-preserved. Similarly, from Fig. 4 (c) and (d) we see that the 

lowest distant point from the reference hyper-plane is located at the center of the arc and from the 3D-RadVis Antenna plots (Fig. 4 

(g) and (h)) we see that the shape and distribution of solutions are well preserved. 
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(a)  (b)  (c)  (d)  

  
(e)  (f)  

  
(g)  (h)  

Fig. 5. Scatter and 3D-RadVis Antenna plots for three-objective PFs.    and    points are generated using the simplex lattice design and     methods 

respectively. (a) Scatter plot of    points for concave PF   
    

    
   . (b) Scatter plot of    points for concave PF   

    
    

   . (c) Scatter plot 

of    points for convex PF   
      

      
     . (d) Scatter plot of    points for convex PF   

      
      

     . (e) 3D-RadVis Antenna plot of    

points for concave PF   
    

    
   . (f) 3D-RadVis Antenna plot of    points for concave PF   

    
    

   . (g) 3D-RadVis Antenna plot of    

points for convex PF   
      

      
     . (h) 3D-RadVis Antenna plot of    points for convex PF   

      
      

     . 
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(a)  (b)  

  
(c)  (d)  

Fig. 6. 3D-RadVis Antenna plots for four-objective PFs.    and    points are generated using the simplex lattice design  and     methods respectively. (a)     

points for concave PF   
    

    
    

   . (b)    points for concave PF   
    

    
    

   . (c)    points for convex PF   
      

      
    

  
     . (d)    points for convex PF   

      
      

      
     . 

 

Experimental series 2 – these experiments investigate how well 3D-RadVis Antenna maps 3-objective optimal solution sets (   

and   ) with different diversities onto 3D space. Fig. 5 (a) to (d) show 3D scatter plots of    and    points for 3D concave (  
  

  
    

   ) and convex (  
      

      
     ) PFs. Similar to the previous experiment 3D-RadVis Antenna is able to capture 

the shape and distribution of 3D PFs. Moreover, 3D-RadVis Antenna is clearly able to show the distribution of solutions along each 

objective which would not be possible using other types of visualization tools. For example, in Fig. 5 (g), for the    solution set, we 

see sparse region at the top portion of the antenna and high dense values at the bottom of the antenna. In other words, many of the 

solutions are concentrated on the interval of [0, 0.5] along each objective and leaving much of the interval [0.5, 1] 

underrepresented. However in Fig. 5 (h), for    solution set, we see that the distribution of solutions along each objective is much 

better than that of   . This is because the    solution set is generated using the Pareto-adaptive weight vectors (    method) with 

highest possible HV value.  

Experimental series 3 – these experiments investigate how well 3D-RadVis Antenna maps 4-objective optimal solution sets (   

and   ) with different diversities onto 3D space. Fig. 6 (a) to (d) show 3D-RadVis Antenna plots of    and    points for 4D 

concave (  
    

    
    

   ) and convex (  
      

      
      

     ) PFs. One interesting observation from these plots is 

that the distribution of the   solution set along each individual objective (Fig. 6 (a)) is better than the    solution set (Fig. 6 (b)) 

even though the    solution set has higher HV value. Thus, we can conclude that a solution set with higher HV value does not 

necessarily exhibit better distribution of solutions along each objective. More discussion on this point is provided in subsection D. 
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Experimental series 4 – these experiments investigate how well 3D-RadVis Antenna maps 5-objective optimal solution sets (   

and   ) with different diversities onto 3D space. Fig. 7 (a) to (d) show 3D-RadVis Antenna plots of    and    points for 5D 

concave (  
    

    
    

    
   ) and convex (  

      
      

      
      

     ) PFs. Similar to the previous three 

experiments we can see that 3D-RadVis Antenna not only is able to capture the shape and distribution of solutions in higher 

dimension but also provide us valuable information regarding the quality of approximate solutions. 

Experimental series 5 – these experiments investigate how well 3D-RadVis Antenna maps 3- to 5-objective solutions with 

complicated PFs, namely DTLZ7 and WFG1. The DTLZ7 test problem has disconnected convex and some mixed convexity 

Pareto optimal fronts. On the other hand, the WFG1 has a mixed and biased Pareto-optimal front.  Fig. 8(a), (c) and (e) depicts 

3D-RadVis Antenna transformation of the DTLZ7 problem. As the number of dimension increases, the bottom portion of the 3D-

RadVis Antenna plot is able to capture shape and distribution of solutions on the Pareto optimal front. Similarly, the top portion 

of the plot (Antenna) is also able to capture the distribution of solution along each objective. From this plot we see that the 

DTLZ7 test problem has good distribution of solution along the     (the last) objective and very sparse distribution along the 

remaining (   ) objectives. Furthermore, as the number of objectives increase the sparseness of solutions along these (   ) 

objectives is also increases. Similarly Fig. 8(b), (d) and (e) depicts 3D-RadVis Antenna transformation of the WFG1 test problem. 

From these figures we see that 3-RadVis Antenna is able to capture the shape (mixed type) and the distribution of solutions along 

each objectives and on the Pareto optimal surface.  

  
(a)  (b)  

  
(c)  (d)  

Fig. 7. 3D-RadVis Antenna plots for four-objective PFs.    and    points are generated using the simplex lattice design and     methods respectively. (a)     

points for concave PF   
    

    
    

    
   . (b)    points for concave PF   

    
    

    
    

   . (c)    points for convex PF   
      

    
  

      
      

     . (d)    points for convex PF   
      

      
      

      
     . 
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(a) Three-objective DTLZ7 (b) Three-objective WFG1 

  
(c) Four-objective DTLZ7 (d) Four-objective WFG1 

  
(e) Five-objective DTLZ7 (f) Five-objective WFG1 

Fig. 8. 3D-RadVis Antenna plots of three- to five-objective DTLZ7 and WFG1 test problems.  The DTLZ7 test problem has disconnected,  convex and mixed 

convexity PF and the WFG1 test problem has convex, mixed and biased PF. 

 

2) Tracking the Progress of an Optimizer Using 3D-RadVis Antenna 

The previous section has shown the effectiveness of 3D-RadVis Antenna to visualize and assess the quality of different 

solution sets when the number of objectives are two or more. In this section we investigate how 3D-RadVis Antenna can be used 

to plot approximate PFs or monitor the progress of an algorithm when the        is known. The 3D-RadVis Antenna plots in Fig. 

9 show the performance of NSGA-III algorithm for 5-objective DTLZ2 test problem after 25, 50, 200 and 400 generations. From 

these plots we can see that NSGA-III is able to converge to the        while maintaining well distributed solutions. However, as 
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the generation progressed, the distribution of solutions along each objective deteriorated due to reference points utilized in 

NSGA-III algorithm. This phenomenon was expected as NSGA-III tries to guide solutions towards well-spread reference points 

on the Pareto-surface but ignoring the distribution of solutions along each objective. From this experiment, we can see that 3D-

RadVis Antenna can effectively be used by researchers and decision makers to explore, understand and ultimately improve the 

search behavior of an algorithm. Furthermore, in an interactive environment it is possible to rotate and visualize solutions from 

different viewpoints to better understand the relationships among solutions and selectively guide solutions towards the optimal 

PF. Effectiveness of Proposed Performance Measures 

In this section we investigate the effectiveness of proposed performance measures, ObjIGD and       when assessing the 

performance of MaOOAs. The first set of experiments investigate the similarities and differences among the proposed metrics 

and widely used MaOO performance metrics on PFs containing various geometrical shapes. The second set of experiments 

examines how the proposed visualization scheme and performance measures can be combined to provide useful information 

regarding the performance of MaOOA. The last set of experiments investigates the effectiveness of ObjIGD and       measures 

when evaluating four MaOOAs on five widely used benchmark problems.  

 

 

(a) 25 generations (b) 50 generations 

 
 

(c) 200 generations (d) 400 generations 

Fig. 9. 3D-RadVis Antenna plots showing the progress of obatained solutions by NSGA-III for 5-objective DTLZ2 test problem after 25, 50, 200, and 

400 generations. 

3) Comparison of Proposed Performance Measures with Spread, IGD, and HV on 2-, 3-, 4-, and 5-D PFs 

In this section, we investigate the similarities and differences of the proposed measures and three widely used MaOO 

performance metrics on various PF shapes and dimensions. Table III shows the number of solutions in the reference PFs and 

optimal PFs used in this experiment. The optimal PF,    is generated using the simplex lattice design and    is generated using 

    method by restructuring    points so that they attain the maximum HV value. Figures 10 to 13 show differences in metrics 

(diversity               , objective-wise diversity                        , convergence and diversity          
        , convergence and diversity                    , and objective-wise convergence and diversity              
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            ) on 2-, 3-, and 4-objective PFs. A negative difference value indicates the superiority   over    while a positive 

difference value indicates the superiority    over    according to the assessed metric. A difference value of zero indicates no 

superiority between    and   . 

Experimental series 1 examines the relationship of five performance metrics on 2D PFs. Fig. 10 shows the difference values 

of each metric on PFs   
 

   
 

  , where            . When comparing the diversity metrics (  and      ), in Fig. 10 (a) and 

(b), both metrics exhibit similar results when            . However when                   is not able to distinguish the 

difference between the two optimal sets. Fig. 10 (c) to (e) show the difference values for convergence-diversity measures (HV, 

IGD and ObjIGD). The difference values for IGD are similar to ObjIGD, however both measures contradicting difference values 

with the HV metrics on concave PFs,            .     
Experimental series 2 examines the relationship of performance measures on 3D PFs. Fig. 11 shows the difference values of 

each measure on PFs   
 

   
 

   
 

  , where            . When comparing the diversity measures (  and      ), in Fig. 11 

(a) and (b), the   metric was unable to decisively distinguish the difference between the two optimal PFs for            . On 

the other hand, the       measure was able to distinguish   ’s superiority on             and inferiority on             . Fig. 

11 (c) to (e) show the difference values for convergence-diversity measures (HV, IGD and ObjIGD). 

Experimental series 3 examines the relationship of performance metrics on 4D PFs. Fig. 12 shows the difference values of 

each metric on PFs   
 

   
 

   
 

   
 

  , where            . As it can be seen in Fig. 12 (a) and (b), the diversity measures 

(  and      ) exhibit similar results for the convex portion of the PF             and contradictory results for the concave 

portion of the PF            . When comparing the convergence-diversity measures (HV, IGD, and ObjIGD), in Fig. 12 (c) to 

(e), the IGD and ObjIGD measures show identical trend on            , however the HV metric shows contradictory results for 

all shapes.    

Experimental series 4 examines the relationship of performance metrics on 3D PFs. Fig. 13 shows the difference values of 

each metric on PFs   
 

   
 

   
 

   
 

   
 

  , where            . When comparing the diversity measures (  and      ), in 

Fig. 13 (a) and (b), the   and       measures show consistent trend as the previous experiment (4D PFs). Similarly, the 

convergence-diversity metrics (see. Fig. 13 (c) to (e)) also show the same trend as the previous experiment. However, the HV 

metric difference values for              is close to zero and thus unable to clearly distinguish the superiority of a solution set 

for convex PFs.  

From our experiments on 2- to 5-objective PFs for the two optimal solution sets on different shapes of PFs, we summarize 

our observations as follows: 

 The IGD and ObjIGD performance measures showed similar trend for all test cases, however the ObjIGD results curves 

were smoother than the IGD metric. Therefore, the ObjIGD measure can be used as complementary measure to IGD as a 

tie breaker. 

 As the number of objectives increases, the difference HV values on convex PF,             approaches zero. This 

means, in the presence of extreme cases, the HV metrics cannot distinguish the superiority of a solution set for high 

dimension on convex PFs. Therefore, in such cases the ObjIGD measure can be used to determine the superior solution 

set.  

 In almost all experiments the difference   values on concave PFs             were unstable (the difference   values 

fluctuated throughout this interval). However the number of dimension grow the       measure was stable for all PFs and 

as a result this characteristics make it desirable when we need to determine a solution set with greater diversity. 

4) Using the Proposed Visualization and Performance Measures to Assess MaOOAs 

In the previous sections, we have shown how 3D-RadVis Antenna and the proposed performance measures can be used 

separately. In this section, we will show how these two ideas can be combined to assess and investigate the performance of a 

MaOOA visually and quantitatively. Fig.s 14 to 17 show 3D-RadVis Antenna plots with       and ObjIGD values along each 

objective for GDE3, NSGA-II and NSGA-III algorithms on 3- and 5-objective DTLZ2 and convex DTLZ2 test problems. In 3-

dimesional DTLZ2 (Fig. 14), we see that GDE3 has slightly better distribution of solutions along each objective than NSGA-II. 

However, both NSGA-II and GDE3 have significantly better distribution in all objectives than NSGA-III. The poor performance 

of NSGA-III along each objective is attributed to the fact that NSGA-III tries to guide solutions towards well-spread reference 

points onto the optimal Pareto-surface while disregarding the distribution of solutions along each objective.  When comparing the 

IGD values for these algorithms (                               for GDE3, NSGA-II and NSGA-III respectively), 

NSGA-III exhibited superior performance than the NSGA-II and GDE3 as the IGD metric measures the convergence and 

distribution of solutions on the optimal PF surface.  

In 3-objective convex DTLZ2, from Fig. 15 (a) and (b), GDE3 and NSGA-II show very poor distribution on the optimal 

Pareto-surface while attaining far better distribution of solutions along each objective. On the other hand, NSGA-III (see Fig. 15 

(c)) is able to distribute 92 solutions onto 91 uniformly placed reference points on a normalized hyper-plane. However, NSGA-III 
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still fails to attain good distribution of solutions along each objective. The IGD values for GDE3, NSGA-II and NSGA-III are 

         ,          , and           respectively.  
 

  

 

 (a)  (b)   

   

(c)  (d)  (e)  

Fig. 10. Differences in metrics of two-objective    and    solutions containing 25, 50, and 100 points.    and    points are generated using the simplex lattice 

design and     methods respectively and          . A positive value indicates    is superior to   . (a) Diversity                . (b) Objective-wise 

diversity                        .  (c) Convergence and diversity                  . (d) Convergence and diversity                    .  (e) 

Objective-wise convergence and diversity                          . 

 

  

 

 (a)  (b)   

   
(c)  (d)  (e)  
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Fig. 11. Differences in metrics of three-objective    and    solutions containing 45, 91, and 153 points.    and    points are generated using the simplex lattice 

design and     methods respectively and          . A positive value indicates    is superior to   . (a) Diversity                . (b) Objective-wise 

diversity                        .  (c) Convergence and diversity                  . (d) Convergence and diversity                    .  (e) 

Objective-wise convergence and diversity                          . 

 

  

 

 (a)  (b)   

   

(c)  (d)  (e)  

Fig. 12. Differences in metrics of four-objective    and    solutions containing 56, 120, and 220 points.    and    points are generated using the simplex lattice 

design and     methods respectively and          . A positive value indicates    is superior to   . (a) Diversity                . (b) Objective-wise 

diversity                        .  (c) Convergence and diversity                  . (d) Convergence and diversity                    .  (e) 

Objective-wise convergence and diversity                          . 

 

  

 

 (b)  (c)   

   

(d)  (e)  (f)  
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Fig. 13. Differences in metrics of five-objective    and    solutions containing 70, 210, and 330 points.    and    points are generated using the simplex lattice 

design and     methods respectively and          . A positive value indicates    is superior to   . (a) Diversity                . (b) Objective-wise 

diversity                        .  (c) Convergence and diversity                  . (d) Convergence and diversity                    .  (e) 

Objective-wise convergence and diversity                          . 

In 5-objective DTLZ2 test problem, from Fig. 16 (a), GDE3 show fair distribution on the optimal Pareto-surface while attaining 

an excellent distribution along each objective. On the other hand, from Fig. 16 (b), we see that NSGA-II is not able to maintain 

well-converged or good distribution of solutions on the optimal Pareto surface or along each objective. This shows that NSGA-II 

performs better on bi- and tri-objective problems and loses its power when the number of objectives is high. Fig. 16 (c) show that 

the NSGA-III algorithm is able to maintain well-converged and uniformly distributed solutions on the optimal PF surface and as a 

result it is able to achieve superior IGD score. The IGD scores for GDE3, NSGA-II and NSGA-III are          ,          , 

and           respectively. Similar to the previous results NSGA-III still failed to show good distribution along each 

objective. In the 5-objective convex DTLZ2 test problem, from Fig. 17 (b) we see that the performance of NSGA-II algorithm 

continues to deteriorate and as a result it showed very poor IGD, ObjIGD and       scores. However, from Fig. 17 (a) and (c) we 

see that GDE3 and NSGA-III are able to maintain their strength (i.e. good convergence and distribution of solutions on the 

optimal PF surface for NSGA-III and good convergence and well-distributed solution along each objective for GDE3) for 5- 

objective convex DTLZ2 test problem. The IGD scores for GDE3, NSGA-II and NSGA-III are          ,          , and 

          respectively. An interesting observation from Figs 15 (c) and 17 (c) is that even though the supplied reference points 

for NSGA-III are uniformly distributed on normalized hyper-plane, the distribution of solution obtained by the NSGA-III 

algorithm are poor outside the intermediate region of the surface. This poor distribution of solutions also surfaced in the 3D-

RadVis Antenna plots.  

D. Comparison of Proposed Performance Measures with Spread, IGD, and HV on 2-, 5-, and 8-D on Benchmark Test 

Problems  

In this experiment series, we compare the performance of GDE3, NSGA-II, and NSGA-III algorithms based on the IGD [43-

45], ObjIGD, and       measures on 3-, 5- and 8-objective DTLZ1 to DTLZ4, and convex DTLZ2 test problems. The reference 

Pareto fronts used in the IGD and ObjIGD measures are mathematically generated to evaluate the efficacy of the proposed 

measure. Table VI shows the IGD, ObjIGD and       scores as well as the best, the worst, the median, and the average results for 

GDE3, NSGA-II and NSGA-III. The first best performing algorithm for each measure is emphasized in grey shade and the 

second best is emphasised in boldface. 

From Table VI, as expected, we see that NSGA-III has the worst score when measuring the overall distribution of solutions 

along each objective. This is because NSGA-III tries to guide solutions towards well-spread reference points on the Pareto-

surface while discounting the distribution of solutions along each objective. When using the       measure, both NSGA-II and 

GDE3 shown comparable performance as the       measure only measures the distribution of solutions along each objective 

while disregarding the convergence of solutions. On the other hand, when using the ObjIGD measure, GDE3 has shown superior 

performance as the ObjIGD measure measures the convergence and the distribution of solutions along each objective. Overall, 

GDE3 was the dominant algorithm when comparing the performance of algorithms in all measures utilized in this study.  

To improve the distribution of solutions along each objective while preserving the convergence and distribution of solutions 

on the optimal PF surface, we suggest using an alternate systematic way of generating reference points used in NSGA-III. For 

example, NSGA-III uses Das and Dennis’s [46] systematic approach to generate uniformly distributed reference points on a 

normalized hyper-plane. Fig 18(a) shows 3D-RadVis Antenna plot of reference points generated using the Das and Dennis’s 

approach for 5-objective with 6 divisions. From this plot we see that the distribution of these reference points along each 

objective is poor. Instead we can use a method similar the     approach [41] (in our case     and the optimal scaling 

parameter      is calculated based on the minimum      ) to adjust the reference points with better distribution along each 

objective. Fig. 18 (b) shows 3D-RadVis Antenna plot of adjusted reference points using the     approach 

 

From our studies on the proposed measures (ObjIGD and      ),  we summarize our findings as follows: 

1) The ObjIGD and       measures are not meant to replace popular performance metrics such as IGD and HV, but rather 

to complement existing performance metrics. 

2) The       measure should be used when solely interested in measuring the distribution of solutions along each objective. 

3) The ObjIGD measure should be used when mainly interested in measuring the distribution of solutions along each 

objective but still require some information of convergence. 

4) When measuring the overall performance of a MaOOA, the ObjIGD and       measures can be used as tiebreaker. 

5) When designing reference-point based algorithms,   we should also incorporate the idea of distribution of points along 

each objective. 
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(a) GDE3 

 
(b) NSGA-II 

 
(c) NSGA-III 

Fig. 14. 3D-RadVis Antenna plots of three-objective DTLZ2 problem showing the convergence and diversity of obtained solutions onto the Pareto optimal 

surface and the convergenc and diversity of obtained solutions along each objective. A small value of      
  and         indicates the superiority of the 

solution along the     objective. 
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(d) GDE3 

 

(e) NSGA-II 

 
(f) NSGA-III 

Fig. 15. 3D-RadVis Antenna plots ofthree-objective convex DTLZ2 problem showing the convergence and diversity of obtained solutions onto the Pareto optimal 

surface and the convergenc and diversity of obtained solutions along each objective. A small value of      
  and         indicates the superiority of the 

solution along the     objective. 
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(a) GDE3 

 

 

(b) NSGA-II 

 

 

(c) NSGA-III 

Fig. 16. 3D-RadVis Antenna plots five-objective DTLZ2 problem showing the convergence and diversity of obtained solutions onto the Pareto optimal surface 

and the convergenc and diversity of obtained solutions along each objective. A small value of      
  and         indicates the superiority of the solution 

along the     objective. 
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(a) GDE3 

 

(b) NSGA-II 

 

(c) NSGA-III 

Fig. 17. 3D-RadVis Antenna plots five-objective convex DTLZ2 problem showing the convergence and diversity of obtained solutions onto the Pareto optimal 

surface and the convergenc and diversity of obtained solutions along each objective. A small value of      
  and         indicates the superiority of the 

solution along the     objective.

TABLE VI.  BEST, MEDIAN, WORST, AND AVERAGE IGD, OBJIGD AND       VALUES FOR GDE3, NSGA-II, AND NSGA-III ON M-OBJECTIVE DTLZ TEST 

PROBLEMS. FIRST BEST PERFORMING ALGORITHM IS SHOWN IN GREY HIGHLIGHT AND SECOND BEST IS SHOWN IN BOLDFACE. 
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Problem M Max Gen 
IGD ObjIGD       

GDE3 NSGA-II NSGA-III GDE3 NSGA-II NSGA-III GDE3 NSGA-II NSGA-III 

DTLZ1 

3 400 

5.60E-04 

5.86E-04 

1.05E-02 

1.08E-03 

5.97E-04 

6.84E-04 

9.38E-04 

7.03E-04 

4.41E-04 

5.37E-04 

2.49E-03 

6.49E-04 

4.39E-05 

4.56E-05 

7.93E-05 

4.72E-05 

5.12E-05 

5.68E-05 

7.42E-05 

5.92E-05 

8.72E-05 

1.11E-04 

6.28E-04 

1.58E-04 

4.15E-03 

4.37E-03 

7.03E-03 

4.51E-03 

4.70E-03 

5.15E-03 

7.01E-03 

5.39E-03 

8.04E-03 

9.81E-03 

5.24E-02 

1.38E-02 

5 1000 

1.33E-03 

1.36E-03 

1.41E-03 

1.36E-03 

3.05E-02 

8.10E-02 

1.07E+00 

1.49E-01 

1.15E-03 

1.42E-03 

8.40E-03 

2.60E-03 

2.21E-05 

2.49E-05 

2.84E-05 

2.50E-05 

1.51E-04 

2.25E-04 

3.72E-04 

2.41E-04 

8.64E-05 

2.04E-04 

3.14E-03 

6.83E-04 

3.21E-03 

3.27E-03 

3.34E-03 

3.28E-03 

1.67E-02 

2.84E-02 

4.98E-02 

2.92E-02 

1.31E-02 

2.33E-02 

3.93E-01 

8.42E-02 

8 1500 

5.41E-03 

5.91E-03 

6.48E-03 

5.90E-03 

1.18E-01 

4.99E-01 

1.51E+00 

6.20E-01 

2.47E-03 

1.04E-02 

1.16E-02 

8.49E-03 

2.33E-05 

2.87E-05 

3.79E-05 

2.95E-05 

1.36E-04 

2.44E-04 

3.43E-04 

2.39E-04 

2.17E-04 

2.79E-03 

3.18E-03 

2.19E-03 

4.16E-03 

4.62E-03 

5.10E-03 

4.60E-03 

2.18E-02 

2.89E-02 

4.27E-02 

3.00E-02 

3.82E-02 

4.14E-01 

4.54E-01 

3.28E-01 

DTLZ2 

3 250 

6.99E-04 

7.35E-04 

8.08E-04 

7.45E-04 

7.69E-04 

8.19E-04 

8.84E-04 

8.17E-04 

5.92E-04 

5.94E-04 

6.70E-04 

5.99E-04 

4.10E-05 

4.28E-05 

4.46E-05 

4.28E-05 

5.07E-05 

5.62E-05 

5.93E-05 

5.55E-05 

1.11E-04 

1.26E-04 

1.37E-04 

1.24E-04 

3.34E-03 

3.47E-03 

3.67E-03 

3.47E-03 

4.01E-03 

4.29E-03 

4.51E-03 

4.27E-03 

7.72E-03 

8.54E-03 

9.55E-03 

8.59E-03 

5 500 

1.94E-03 

1.99E-03 

2.03E-03 

1.99E-03 

3.18E-03 

3.53E-03 

4.20E-03 

3.59E-03 

1.84E-03 

1.84E-03 

1.85E-03 

1.84E-03 

2.23E-05 

2.29E-05 

2.36E-05 

2.29E-05 

3.99E-05 

5.03E-05 

5.58E-05 

5.03E-05 

2.86E-04 

3.35E-04 

3.70E-04 

3.31E-04 

4.23E-02 

4.24E-02 

4.24E-02 

4.24E-02 

4.14E-03 

4.57E-03 

6.92E-03 

4.69E-03 

5.08E-02 

5.26E-02 

5.44E-02 

5.27E-02 

8 750 

7.55E-03 

8.49E-03 

9.20E-03 

8.34E-03 

1.73E-02 

2.10E-02 

2.50E-02 

2.11E-02 

4.08E-03 

8.01E-03 

1.05E-02 

7.11E-03 

4.99E-05 

5.53E-05 

6.96E-05 

5.63E-05 

6.72E-05 

8.02E-05 

9.04E-05 

7.94E-05 

3.96E-04 

8.39E-04 

2.21E-03 

1.01E-03 

1.45E-02 

2.72E-02 

4.20E-02 

2.63E-02 

5.08E-03 

5.88E-03 

6.80E-03 

5.95E-03 

1.49E-01 

2.18E-01 

3.50E-01 

2.15E-01 

Convex 

DTLZ2 

3 250 

5.15E-04 

5.57E-04 

6.19E-04 

5.60E-04 

5.52E-04 

6.40E-04 

8.37E-04 

6.48E-04 

5.43E-04 

5.92E-04 

1.27E-03 

6.69E-04 

4.67E-05 

4.75E-05 

4.89E-05 

4.76E-05 

6.04E-05 

6.48E-05 

7.15E-05 

6.51E-05 

1.37E-04 

1.84E-04 

4.29E-04 

2.12E-04 

5.38E-03 

5.51E-03 

5.71E-03 

5.51E-03 

6.58E-03 

7.01E-03 

7.70E-03 

7.06E-03 

1.56E-02 

2.13E-02 

4.68E-02 

2.45E-02 

5 750 

9.12E-04 

9.64E-04 

1.04E-03 

9.74E-04 

7.91E-03 

1.22E-02 

2.05E-02 

1.35E-02 

8.25E-04 

9.29E-04 

1.47E-03 

1.01E-03 

2.38E-05 

2.58E-05 

2.75E-05 

2.56E-05 

4.61E-04 

6.51E-04 

8.12E-04 

6.48E-04 

1.76E-04 

2.26E-04 

3.50E-04 

2.40E-04 

1.49E-01 

1.49E-01 

1.49E-01 

1.49E-01 

5.10E-02 

8.77E-02 

1.62E-01 

9.70E-02 

1.61E-01 

1.76E-01 

1.88E-01 

1.75E-01 

8 2000 

2.66E-03 

3.52E-03 

4.10E-03 

3.46E-03 

5.89E-03 

1.21E-02 

2.02E-02 

1.27E-02 

1.65E-03 

3.84E-03 

6.49E-03 

3.61E-03 

1.05E-04 

1.35E-04 

1.61E-04 

1.34E-04 

3.26E-04 

4.98E-04 

6.78E-04 

4.92E-04 

3.50E-04 

7.92E-04 

1.02E-03 

7.35E-04 

7.90E-02 

9.07E-02 

1.12E-01 

9.26E-02 

4.95E-02 

7.51E-02 

1.22E-01 

7.70E-02 

3.42E-01 

4.66E-01 

4.78E-01 

4.55E-01 

DTLZ3 

3 250 

7.07E-04 

7.61E-04 

4.11E-02 

5.80E-03 

1.38E-02 

6.52E-02 

1.40E-01 

6.68E-02 

5.96E-04 

8.75E-04 

3.47E-03 

1.16E-03 

4.08E-05 

4.36E-05 

2.29E-04 

6.75E-05 

6.54E-04 

1.20E-03 

2.34E-03 

1.35E-03 

9.24E-05 

1.33E-04 

6.54E-04 

1.80E-04 

3.32E-03 

3.59E-03 

1.82E-02 

5.41E-03 

4.33E-02 

8.45E-02 

1.88E-01 

9.47E-02 

6.97E-03 

9.31E-03 

5.34E-02 

1.33E-02 

5 500 

1.95E-03 

1.99E-03 

2.07E-03 

2.00E-03 

9.73E-01 

1.39E+00 

2.48E+00 

1.51E+00 

1.84E-03 

4.67E-03 

9.46E-03 

5.16E-03 

2.21E-05 

2.29E-05 

2.42E-05 

2.30E-05 

3.08E-04 

4.53E-04 

7.82E-04 

4.83E-04 

7.37E-05 

7.17E-04 

2.87E-03 

1.09E-03 

1.99E-01 

1.99E-01 

1.99E-01 

1.99E-01 

1.84E-02 

2.64E-02 

6.00E-02 

2.79E-02 

1.98E-01 

2.16E-01 

4.41E-01 

2.45E-01 

8 750 

9.50E-03 

9.30E-02 

2.46E-01 

1.01E-01 

9.41E-01 

2.44E+00 

5.60E+00 

2.79E+00 

6.54E-03 

1.32E-02 

1.01E-01 

2.53E-02 

2.62E-04 

1.80E-03 

3.31E-03 

1.77E-03 

6.36E-04 

9.92E-04 

1.49E-03 

1.05E-03 

2.79E-04 

5.74E-04 

3.99E-03 

1.23E-03 

1.94E-02 

3.26E-02 

1.17E-01 

4.16E-02 

1.73E-02 

3.16E-02 

5.50E-02 

3.42E-02 

1.98E-01 

3.84E-01 

4.69E-01 

3.68E-01 

DTLZ4 

3 250 

6.97E-04 

7.41E-04 

8.25E-04 

7.47E-04 

7.47E-04 

8.06E-04 

8.46E-04 

8.00E-04 

5.94E-04 

8.13E-04 

1.03E-02 

3.31E-03 

4.12E-05 

4.33E-05 

4.51E-05 

4.33E-05 

5.31E-05 

5.53E-05 

6.20E-05 

5.56E-05 

9.95E-05 

1.28E-04 

2.98E-03 

9.30E-04 

3.20E-03 

3.48E-03 

3.69E-03 

3.46E-03 

4.14E-03 

4.24E-03 

4.59E-03 

4.28E-03 

8.43E-03 

8.86E-03 

1.71E-01 

6.43E-02 

5 500 

1.94E-03 

1.97E-03 

2.02E-03 

1.98E-03 

2.59E-03 

2.68E-03 

2.88E-03 

2.71E-03 

1.84E-03 

1.99E-03 

5.45E-03 

2.22E-03 

2.21E-05 

2.30E-05 

2.36E-05 

2.30E-05 

3.60E-05 

3.97E-05 

4.87E-05 

4.05E-05 

7.79E-05 

1.13E-04 

1.00E-03 

1.88E-04 

4.09E-02 

4.09E-02 

4.09E-02 

4.09E-02 

3.57E-03 

4.64E-03 

8.75E-03 

4.96E-03 

4.04E-02 

4.31E-02 

1.25E-01 

4.79E-02 

8 750 

5.77E-03 

6.37E-03 

6.90E-03 

6.41E-03 

2.00E-02 

2.43E-02 

2.68E-02 

2.39E-02 

4.11E-03 

5.52E-03 

1.06E-02 

5.64E-03 

5.61E-05 

6.35E-05 

7.52E-05 

6.32E-05 

6.80E-05 

8.40E-05 

9.78E-05 

8.42E-05 

2.18E-04 

5.77E-04 

2.29E-03 

6.48E-04 

3.24E-02 

5.41E-02 

7.73E-02 

5.50E-02 

5.17E-03 

5.71E-03 

8.06E-03 

5.82E-03 

1.60E-01 

1.79E-01 

3.25E-01 

1.91E-01 

 

V. CONCLUDING REMARKS  

In this paper, we proposed a powerful 3D visualization method called, 3D-RadVis Antenna. A 3D-RadVis Antenna plot has 

two sections: the bottom section of the plot (3D-RadVis) depicts the shape, convergence, and distribution of a solution set while 

the top section of the plot (Antenna) depicts the distribution of solutions along each objective. It uses a radial coordinate system 

to map   dimensional objectives space to a 2D space (       and a distance ( ) to maintain the location of each non-

dominated solution from a reference hyper-plane constructed using the extreme points. The radial coordinates, (      , show the 

distribution of the solution and the combination of these radial coordinates with the distance metric    show the shape and 

accuracy of the solution.  

From the experimental tests on widely used MaOO test problems, 3D-RadVis Antenna is able to precisely show the shape, 

distribution, and convergence of approximate solutions on the PF surface as well as distribution of these solution along each 
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objective. 3D-RadVis Antenna can be scaled to higher dimensions and capable of showing multiple PFs simultaneously (e.g. true 

PF and approximate solutions). This visualization tool can effectively be used by researchers and decision makers to explore and 

understand the search behavior of an algorithm at each generation whereby gaining useful information regarding an algorithm to 

improve their search ability and ultimately, we hope, the development of new optimization algorithms. 3D-RadVis Antenna can 

also be utilized by decision-makers to observe the relative location of a solution, evaluate trade-offs among objectives, and select 

preferred solutions. For an improved navigation, decision-makers can use immersive virtual technologies, such as the CAVE, to 

easily visualize the entire PF from the 3D-RadVis plot and select the ideal solution according to their requirement and budget.   

 

 
(a) 

 

 
(b) 

Fig. 18. 3D-RadVis Antenna showing five-objective refrence points generated using (a) Das and Dennis’s method (b)     method 

In conjunction with the 3D-RadVis Antenna, we have proposed two performance measures; objective-wise inverse 

generational distance (ObjIGD) and line distribution (     ) to measure the convergence and distribution of solutions along each 

objective. Experimental results have shown that these two measures can be used as reliable complementary measures along with 

other widely used performance measures to compare many-objective solution sets.  

In future work, we would like to investigate how we can improve the performance (i.e. convergence and distribution along 

each objective) of reference-point based algorithms through the generation of well-balanced reference points – reference points 

with good distribution on the hyper-plane and along each objective. 
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